

1 Motivation & Problem Statement

2 Solution Proposal: Tech Stack & Data

3 Research Questions

4 Approaches & Timeline

# High HR workloads result in extensive manual labor and long delays





### **Problem 1:** Large volumes of HR inquiries

- HR departments deal with large quantities of daily tasks and queries from employees
- More than 330.000 HR tickets per year are created at SAP
- To effectively manage this, a substantial number of HR experts are needed

### **Problem 2:** Manual and time-consuming process

- Employee questions must be manually processed and responded to in accordance with HR rules and policies
- The result is long waiting times, ranging from hours to days or even weeks

# QA chatbots reduce HR workloads by processing inquiries significantly more efficiently













**Employees** 





### Benefit 1: Save time for both employees and the HR domain experts

- QA chatbots provide immediate responses, effectively eliminating any answer delays
- Reduction of HR workload allows the HR experts to focus on more important tasks
- Goal: Replace 30% of HR tickets with chatbot functionalities

### **Benefit 2:** Automation of (mundane) manual tasks

- The process of answering employee questions based on HR policies is highly automatable using SOTA NLP models (e.g., LLMs)
- Chatbots utilize the HR rules and policies as grounding for their responses



1 Motivation & Problem Statement

2 Solution Proposal: Tech Stack & Data

3 Research Questions

4 Approaches & Timeline

# **Retrieval-augmented Generation** using LLMs – Most flexible and least limiting solution





# Retrieval-augmented Generation using LLMs – Most flexible and least limiting solution





### **Document Retriever**

NLG (LLMs)

**Current** solution:



Haystack DPR Fine-tuned

**Proposed** solution:



OpenAl Embeddings + Vector Search
Better embeddings → better performance

### Goal: Higher retrieval accuracy + better performance

- · Removes need for fine-tuning DPR
- Embed new documents → include in vector search
- Better embeddings lead to better context retrieval
- Vector Database: Scalability, Hybrid Search
- Advanced retrieval methods: Query Transformations (Intended Topics, HyDE), Reranking, ...

**Current** solution:



T5 / LongT5 Fine-tuned

**Proposed** solution:



**LLMs**: APIs (OpenAI) / Open-source Prompting → flexible, more powerful Conversational capabilities

### Challenge: Get desired outputs

- · Removes need for fine-tuning custom model
- Instruct LLM to return desired output
  - → Prompt engineering / tuning
  - → In-context learning
- Attach relevant context to ground responses
  - → Prevent hallucinations



**Prompt** 

### A look at the **data**



#### **User Question**

"How can I request an unpaid leave?"

#### **Relevant Context**

If employees have used all annual leave entitlement and still need time of leave, they can request unpaid leave under below condition.

#### ### Eligibility

Permanent employees are eligible for unpaid leave or the company may order an

employee to take a leave of absence due to the following reasons:

\* An employee cannot work for one week or more due to illness unrelated to work.

### **Model Response**

To apply for Unpaid Leave, please follow the steps below:

- . Fill out the Unpaid Leave Application Form.
- You need to obtain an approval from your manager and HR Business Partner.
- Once you get the approval, please send the application form with the approval to HRdirect via ticket for the creation of unpaid leave quota in the system.
- 4. You need to provide an address and contact number so that you can be contacted during your leave of absence.

### **Description**

- Data contains (1) curated FAQ training data and (2) cleaned actual user data from previous iterations
- Final dataset: merge of FAQ + user data
- >89.000 data samples (48k FAQ, rest user data)

#### **Data improvements**

- · Data cleaning / correction, ...
- Improve quality of training data with LLMs: summarize unnecessary long responses, improving grammar / output structure, ...

1 Motivation & Problem Statement

2 Solution Proposal: Tech Stack & Data

3 Research Questions

4 Approaches & Timeline

### **Research Questions**



For domain-specific use-cases, are **LLM Chatbot Systems** able to address the user queries as effectively as humans?

Can direct inference yield adequate results without the need for fine-tuning, and what prompt-tuning techniques can be used to improve the quality of the responses?

What methods can be used to optimize the **retrieval** when using **LLM embeddings** and a **vector database** in comparison to the current **DPR module**?

4 How can **LLMs** be utilized to improve the quality of the training data?

1 Motivation & Problem Statement

2 Solution Proposal: Tech Stack & Data

- 3 Research Questions
- 4 Approaches & Timeline

# **Approaches & Evaluation**



| 1 | Literature Review                   | Literature, Papers, Guides, Documentations,                                             |
|---|-------------------------------------|-----------------------------------------------------------------------------------------|
| 2 | Improve data with LLMs              | Summarizations,                                                                         |
| 3 | Replace <b>DPR</b> System           | OpenAl Embeddings, Vector Search, Optimizations,                                        |
| 4 | Implement the <b>LLM-NLG</b> module | Prompt-Engineering/-tuning, Model / APIs Benchmarks,                                    |
| 5 | Evaluation (w/ Rajna)               | Evaluate <b>components</b> and the <b>whole pipeline end- to-end</b>                    |
| 6 | Consolidation                       | Combine all components into a deployable system, Documentation, Handover, Report Paper, |

# **Project Timeline**







Prof. Dr.

#### **Florian Matthes**

Inhaber des Lehrstuhls

Technische Universität München Fakultät für Informatik Lehrstuhl für Software Engineering betrieblicher Informationssysteme

Boltzmannstraße 3 85748 Garching bei München

Tel +49.89.289.17132 Fax +49.89.289.17136

matthes@in.tum.de wwwmatthes.in.tum.de





# Thank you!

Any questions?

# al offort

### Traditional/Retrieval-based chatbots are limited and require extensive manual effort

